
For the region after the reattachment site 

Nu = c (~/d~ -i Re. ( 3 ) 

The curves of the excess temperatures in dimensionless coordinates in different cross 
sections of the initial (entrant) length of the jet merge into a single universal curve. The 
isotherms of the dimensionless temperatures for all the investigated types of chambers are 
straight radial lines converging at the pole of the jet in the core and at the nozzle orifice 
in the boundary layer. 

The assumption of additivity of the radiant and convective heat-transfer components can 
be used to determine the total heat transfer [2] to the walls of a combustion chamber in the 
first approximation. 

i. 

2. 
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SPECTRAL CP~RACTERISTICS OF TURBULENCE IN ROTATING CHANNELS 

I. M. Korshin UDC 532.517.4 

Spectral characteristics of turbulent flow in rotating channels are considered 
with allowance for the pulsating Coriolis forces and thermal heterogeneity of 
the flow. 

As a fluid flows over a rotor of a turbomachine, the volume forces due to the rotation 
and curvature of the blade surfaces affect the character of the turbulent flow at the sides 
of condensation and rarefaction of the interblade channel. 

Heterogeneity of the thermal and density fields leads to the appearance of Archimedian 
forces, which can intensify or reduce the turbulence. Similar flows in the atmosphere and 
ocean are often called flows with unstable and stable stratification. From now on, this 
terminology will also be used to characterize fluid flow in the rotating channel. 

Let us consider the balance equation for the turbulent energy [i] of the flow of an in- 
compressible fluid in a rotating radial channel. We direct the x axis along the channel 
surface, the y axis, in a perpendicular dirrection, into the flow, and we place the z axis 
on the axis of rotation: 

Ou~ 2ou~ OT 
T-=-_ (1) 

T 0x= 

where X'g are the pulsations of the Coriolis forces, equal to 2mu'~. The upper sign desig- 
nates the flow on the inlet side of the channel, while the lower sign designates the flow 
on the outlet side [2]. 

Writing the velocity correlation as 

OU 
< ~ 'v '  > = - - K - - ,  ( 2 )  

Og 

f Ou ~2 Ou 2ou OT 

we obtain 

(3) 
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In order to obtain a spectral form of Eq. (3), we write the Kolmogorov equation for 
locally homogeneous turbulence [3, 4], taking the principal direction to be along the y 
axis: 

E3 (k) = 2o f k~E (k) dk + H (k), (4)  
h 

where E3(k ) is the amount of energy over the spectrum transferred per unit time from the 
large-scale perturbations with wave numbers less than k to other turbulent perturbations; 
E(k) is the spectrum of the kinetic energy; and the value of H(k) takes into account the 
energy delivered to the turbulent flow. For a stratified fluid in a gravitational field 
under the action of Archimedian forces, the value of H(k) is determined by the formula 
given in [3] 

g i Erv(k)dk. H (k) = --~ h 

In the rotating channel, the Coriolis forces and heterogeneous pulsating thermal field, 
determined by the heterogeneous velocity field and by the transfer of heat from the flow to 
the walls, lead to the appearance of Archimedian forces, where the work done by these forces 

can be represented by the term 2ou I ETv (k)dk. 
T 

Pulsations of the Coriolis forces add to the changes in the turbulent energy of the flow, 

their contribution being defined as 4~ i Euv(k)dk , where Euv(k) is the spectrum of the turbu- 
lent flow of the momentum, k 

Taking into account the aforementioned, we write the spectral equation (4) in the form 

E~ (k) T --~2~u ni Er~ (k) dk -- 4~ ~i E~ (k) dk : 2u ki kfE (k) dk" (5)  

Let us represent the equation for the heat inflow in the form 

- v  - - + ~  = z - -  (6)  
at ~ ag ag ~ 

We determine the adiabatic gradient of the temperature 6 by differentiating the Bernoulli 
equation for the relative motion with respect to y 

d Cp Off (7)  

Let us note that the value of 6 for large rotational velocities may exceed I00 deg/m. 

Let us represent the equation of the heat inflow in the spectral form [5] 

EurT (k) -~- 5 Err (k) dk = Z [ k2Er (k) dk, (8) 
k 

where EuTT(k) d e s c r i b e s  t he  t r a n s f e r  of  the  measure of  the rmal  h e t e r o g e n e i t y  over  t he  
spectrum; ET(k) is the spectrum of the thermal field. 

In accordance with the Monin-Heisenberg theory [3, 5], we write the following expres- 
sions for the spectra: 

E3(k)=K(k)[(  Ou io k ] 
\ o~ / + 2  j k~E(k )  dk , 

h o 

F / dT \2 h j 
he 

i 1 
h - h~ .! 

(9) 

and for the spectral coefficient of the turbulent viscosity 
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K(k) =, ~'o k - 2 f  (k)dk , 
(9a)  

where Yo is a numerical constant of order unity. 

The spectral flow of the momentum in accordance with the proposition of Chen [6] and 
the restriction on the flow according to Obukhov can be written in the form 

eoo(k)dk K(k) 2 k e(k)dk] = , (10) 
h k~ ] 

Taking i n t o  accoun t  Eqs. (9) and (10) ,  t h e  s p e c t r a l  e q u a t i o n s  f o r  t h e  b a l a n c e  o f  t h e  
t u r b u l e n t  e n e r g y  and t h e  i n t e n s i t y  o f  t h e  t e m p e r a t u r e  p u l s a t i o n s  (5) and (8) can be w r i t t e n  
a s  

[i il/2 i( OLl, ~2 h IC ~LL ~ 2 70 k - 2 E  (k) dk -'~ 2 S k~E (k) dk - -  40) + 
t \ o v /  ~o L~ a y )  

ho ~,OV / ~.o 
(11) 

E T , 

(12) 

where 6 = +_ 2oU/Cp. 

In Eqs. (II) and (12) the integrals on the right sides of Eqs. (5) and (8) are re- 
placed respectively by r and CT [3]. 

When k = k 0 and K(k) = K, we obtain from Eqs. (ii) and (12) the macroscopic balance 
equations for the turbulent energy (3) and a measure of the heterogeneity of the thermal 
field 

~T = ~T K ( aT  I "2 OT 
~, Og ] + 5~zK 0----9--" (13) 

which allow us to determine e and ST from the data on distributions of the mean velocity, 
temperature, and the coefficient of turbulent viscosity in the flow. 

We will seek a solution to Eqs. (ii) and (12), according to [5], in the form 

( ~ ) 2 / 3 0 ~ T ' ~ o E T  / E ,---1/3 E(k) : Ls/3[(x), ET(k)---- ~-~-o ) L~/a[r(x)' (14) 

assuming for the scale of buoyancy L the expression 

[ \~( E ]/1/2 T~(t)/s ' )]--3/2 (_~_0)5/4 ' L = 4o __ ( ~rgr  
70 

where f ( x )  and fT (x )  a r e  unknown f u n c t i o n s  t o  be d e t e r m i n e d ,  x = kL. 
a c c o r d i n g  to  [3 ] ,  d i m e n s i o n l e s s  p a r a m e t e r s  f u and FT: 

[ $ \--2/3 1 { - - I  ' L4/3 ( 01s "12, 
f , , =  2 ,, ~o / \ OV ) 

§ )(v) F T =  e r - I  8 �9 L4/a 

o~r 7o \ OV / 

(15) 

Let us also introduce, 

and designate the integrals that appear when transforming (ii) and (12) with allowance for 
expressions (14): 

x 

X X o X o 

(17) 
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We obtain from (ii) and (12) 

F 2 [ ~ + A I O i + B 1 P ]  = 1, 

w h e r e  

p [po + AP] = 1, (18) 

A = 6 [ (  8 \--~o/]'/a ~Zr?o~r L4/3]  ~/2' 

B1 = ~ - - 7  ~rYo 

P ~ = r r + 4 ~ ,  4,~ = 2(r,~ + q>). 

(19) 

From the second of Eqs. (18) we have 

p = - - A  + l / A  S + 4 / P  ( 20 ) 
2 

Having obtained the value of ~l 2 from the first of Eqs. (18) with allowance for (20), and 
differentiating it with respect to x, remembering that 

(F,~ + q~)x = x=f (x), Fx [ (x) , 
4Fax ~ 

we determine the relationship between F and x in the form 

4F - - - -T  V A ~ -  4F~ F 1 / A " F  ~ -t- 4 (21) 

where FI -- B1P -- 1/F 2. 

where 

j 9 

Differentiating (21) with respect to x, we obtain f(x): 

64Fgx 5 
f (x) = 

20FSx ~ + 1/F + [1 - -  f~ + f3 
(22) 

[1 ---- A1BIF2Fs 
(A~F ~ + 4) 3/2 (A 1 -- 4F1)a/2 ' 

A2B1F~ AI (A~ -- 4FI -- 2FF,) 

[== (A2F ~ + 4)a/2 , [ a=  F(A~--4F1) a/2 ' 

2 1 1  B~ ] 
F2 -- F~ ' F (A~F~ +4)~/2 " ; 

Fn = A~A ~ - -  4A2F1 - -  2A2FF~ - -  8FJF. 

As is seen from (22), the function f(x), describing the spectrum of the turbulent energy, 
depends not only on x = kL, but also on the constants A, A I, and B l, defined by the adiabatic 
temperature gradient, rotational velocity, and values of e and g T. 

The quantities A ! and B ! are related by the scale L so that A~ + B 1 = �9 I. 

By differentiating the second of Eqs. (18) with respect to x we obtain the function fT(x). 
Considering that (~T2)'x = x2fT(x), and with allowance for (20), we obtain 

[r(x_____~) _ V A 2 P  + 4 - - A F  (23) 
f (x) 2F6x ~ V A~F~ + 4 

Let us consider the asymptotic behavior of spectra in the interval of buoyancy, i.e., 
when k ~ I/L (small x and, hence, large values of F), and in the interval of inertial 
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Fig. i. Graph of the model function f(x) and the experimental data. 
Solid line depicts the calculated relationship, the open points re- 
present measurements near the outlet side of the blade; the filled 
points represent measurements near the inlet side; 5, 6, 7, 8, 9, 
ii, 14, measurements at the inlet section of the blade; i, 2, 10, 13, 
at the middle part of the blade; 3, 4, 12, at the outlet of the 
blade; i, 5, 8, 9, 13, at a distance y = 20 mm from the blade sur- 
face; i, 2, 4, 6, 7, I0, ii, 12, 14, at a distance y = 0.5 mm; 3, 7, 

= 15.7 rad/sec; the remaining points, ~ = 31.4 rad/sec. 

Fig. 2. The measured values of the longitudinal spectrum of the ve- 
locity pulsation. The notation is the same as in Fig. i. 

convection at large x and small F, assuming for simplicity that the adiabatic temperature 
gradient is small and can be neglected. 

It follows from Eqs. (21) and (22) that for stable stratification in the buoyancy inter- 
val, the falloff of the kinetic-energy spectrum obeys either "the 5/3 law" or "the 11/5 law," 
depending on the ratio between Bz/2 and I/F in Eq. (21). For I/F ~ Bz/2 "the 11/5 law" will 
hold. The falloff of the temperature spectrum obeys either "the 5/3 law" or "the 7/5 law," 
respectively. 

In the interval of inertial convection, both functions f(x) and fT(x) vary according to 
"the 5/3 law." For unsteady stratification, x + 0 and f(x) + 0 as F + 2/Bx; since f(x) + 0 
also as x + m this means that the function f(x) has a maximum [3]. 

The formulas obtained hold for x > x 0, where x 0 is determined from Eq. (21) when F = F 0, 
and the value of F 0 is determined from the first or the second of Eqs. (18) for ~2 = #T 2 = 0. 
For example, it follows from the second of Eqs. (18) that 

! 
Fo= 

V + ArV2 

If we neglect the heat transfer to the walls of the channel and also the adiabatic tem- 
perature gradient (the case that corresponds to gas flow in turbomachines with low rota- 
tional velocities), then f(x) is to be determined from a single Eq. (ii), the solution of 
which is considerably simplified because the last term on the right-hand side of this equa- 
tion vanishes. 

Let us write the scale of buoyancy L, according to (15), as 

L=(4~)-3/2 (--~-o )'/2 ( 2 4 )  

Solution of Eq. (ii) yields 

4.21/2F5/2 (F 2 -]- 4) ( 2 5 )  
x~ = ~o f (x)  = 

4F n ' 3 ( P + 4 )  q- 1/F-- 1 
where 
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Fig. 3. Oscillograms of the pulsa- 
tions of the longitudinal velocity: 
a) for the output side, at the middle 
of the blade, y = 0.5 mm; b) for the 
intake side, inlet section, y=0.bmm; amp- 
lification of oscillograph 5 mV/mm, 

! scanning 0.5 msec/nml. 

F 

(F ~ -~ 4)1/2 

As is seen from (25), in the case under consideration f(x) is a completely universal 
function which depends solely upon x. Equations (25) hold for x > x 0, with the corres- 
ponding expression F 0 being determined from the first of Eqs. (18) for A ! = -i (on the 
basis of (24)); B l = 0, #2 = 0, ~z 2 = 2Fu: 

! 
Fo= (26) 

] / 2 F ~  - -  (2Fu)I /2 

E q u a t i o n  (25)  shows t h a t  t h e  a s y m p t o t i c  b e h a v i o r  o f  f ( x )  f o r  b o t h  s m a l l  and l a r g e  v a l u e s  
of x is described by "the 5/3 law"; however, the numezical coefficients for x -~t3 are dif- 
ferent. 

In order to transform to the function fl(x) describing the one-dimensional spectrum, let 
us use the relationship [3] 

I1 (x) = 1/4 1 + - dg, (27 ) 
x g 

which produces the following expressions for f1(x) for small and large x, respectively: 

4 ]3 
f l ( x ) , . , , - - x - W 3 ;  f l ( x ) ' - "  , x=5/3. (28) 

11 55 

As is seen from (28), there should be an intermediate relationship for other values of x, 
such as is shown in Fig. i; this dependence is well confirmed by the experimental data. 

The turbulence was experimentally investigated in the channels of the wheel of a centri- 
fugal compressor with the outer diameter of the wheel d 2 = 1000 mm, the width of channels 
at the outlet b 2 = 70 mm, and the rotational velocities ~ = 15.7 and 31.4 rad/sec. The 
measurements were taken using sensors made of a tungsten wire of diameter equal to 5-6 um 
and of a 2-mm base in conjunction with a T-7M hot-wire anemometer fabricated at Donetsk 
University. The root-mean-square (rms) vel@city pulsations were measured by a V3-14 volt- 
meter, and the average velocity, by a VK-7A digital voltmeter. Velocity pulsations were 
recorded on magnetic tape, with subsequent decoding of the spectrum by a Model-2120 analyzer 
of the firm Bruel and Kjaer with a Model-2307 automatic recorder at a 10% frequency pass- 
band. The results were then processed using an "Odra" computer; pulsations were also photo- 
graphed from the screen of an SI-19 oscillograph. 

The signals from the sensors mounted on the wheel were transmitted to the devices with 
the help of a contact slip with copper brushes sliding on copper rings. The voltage drop 
in the brush contacts did not exceed 2-3 mV with rms signal levels from the sensors equal 
to 50-250 mV. 

The results of measurements of spectra of pulsations of axial velocities at different 
distances from the channel sides are presented as the function f1(x) in Fig. 1 and as the 
function Ez(k !) in Fig. 2. The values of Ez(k I) were determined on the basis of the Taylor 
hypothesis of "frozen turbulence" from the equations 
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")ztf w (29) 

where El(f) are the processed readings of the analyzer at a frequency f. 

The velocity of dissipation s, required for calculating the scale L, was determined]by 
integrating the experimental relationship according to the equation 

h 

e = 15"v .(. k~E1 (k) dk. ( 30  ) 

It is seen from a comparison of Figs. i and 2 that graphing the experimental data in 
the fl(x)-x coordinates allows us to cluster them closely around the model curve plotted 
according to (25); for clarity the curve is shifted upward by the value Alogf1(x) = 0.5. 
In Fig. 3, oscillograms of the pulsations of the longitudinal velocity at the outlet and 
inlet sides of the channel are shown. As is seen from Figs. 2 and 3, the density level of 
the kinetic energy of the turbulence and pulsations of the velocity is higher at the outlet 
side of the channel, where amplification of the turbulence and, according to [2], an in- 
crease in the dynamic velocity are observed. 

NOTATION 

A, B, constants; E(k), ET(k), ETv(k), spectra of kinetic energy, temperature, and mutual 
spectrum of temperature and velocity fields; K, turbulent viscosity coefficient; L, buoyancy 
scale; T, temperature; X, volume forces; Cp, heat capacity at constant pressure; f, fre- 
quency; g, acceleration of gravity; k, wave number; x, y, z, coordinates; u, v, components 
of the mean velocity; aT, ratio of the turbulent-viscosity coefficient to the heat-transfer 
coefficient; Y0, constant; 6, adiabatic temperature gradient; g, eT, energy dissipation velo- 
city of the turbulent flow and levelling of the measure of the thermal field heterogeneities; 
v, kinematic-viscosity coefficient; X, thermal diffusivity; ~, angular velocity of rotation. 
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